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A new numerical matching technique for linear stability analysis of resistive
magnetohydrodynamics (MHD) modes is developed. The solution to the resistive reduced MHD
equations in an inner layer with a finite width is matched onto the solution to the inertialess ideal
MHD or the Newcomb equation by imposing smooth disappearance of parallel electric field in
addition to the continuity of perturbed magnetic field and its spatial gradient. The boundary
condition for the parallel electric field is expressed as a boundary condition of the third kind for the
stream function of the perturbed velocity field. This technique can be applied for the reversed
magnetic shear plasmas of their minimum safety factors being rational numbers, for which the
conventional asymptotic matching technique fails. In addition, this technique resolves practical
difficulties in applying the conventional asymptotic matching technique, i.e., the sensitivity of the
outer-region solution on the accuracy of the local equilibrium as well as the grid arrangements, even
in normal magnetic shear plasmas. Successful applications are presented not only for the eigenvalue

problem but also for the initial-value problem. © 2010 American Institute of Physics.

[doi:10.1063/1.3420244]

I. INTRODUCTION

Asymptotic matching technique is one of the principal
methods for linear stability analysis of resistive magnetohy-
drodynamics (MHD) modes such as tearing modes."? So far
a number of applications have been made on the stability
calculations of plasmas with cylindrical3_7 and toroidal
geometries.g_11

In applying the asymptotic matching method, the plasma
region is divided into two kinds of regions: a thin inner layer
around the mode-resonant surface and ideal MHD regions
except for the layer. Plasma inertia and resistivity are re-
tained only in the inner layer since the field-line bending
term becomes vanishingly small around the mode-resonant
surface. In the ideal MHD region, on the contrary, the iner-
tialess ideal MHD equation or the Newcomb equation is
solved."*"* The Newcomb equation has a regular singular
point at the mode-resonant surface if the magnetic shear does
not vanish there. Thus, the Newcomb equation has square-
integrable (small) and non-square-integrable (big) solutions.
In order to match the solution for the ideal MHD region onto
the solution for the inner layer, the ratio of the small solution
to the big solution, or the so-called matching data, plays a
crucial role. However, the big solution dominates the small
solution as getting closer to the mode-resonant surface and it
becomes difficult to accurately capture the matching data nu-
merically. Highly sophisticated theory has been developed so
far for cylindricals’7 and toroidal geometn'es.9’”’14’15 Even if
we utilize such theory, the matching data have been revealed
to be sensitive to local MHD equilibrium accuracy and grid

“Electronic mail: furukawa @k.u-tokyo.ac.jp.

1070-664X/2010/17(5)/052502/15/$30.00

17, 052502-1

arrangements at the mode-resonant surface by numerical
experiments.14 In addition, the Frobenius series solution is
possible only if the mode-resonant surface is a regular sin-
gular point. If the magnetic shear vanishes at the mode-
resonant surface, it becomes an irregular singular point, and
therefore the above argument fails from the beginning.

In the inner layer, on the other hand, the governing equa-
tions are simplified considerably since the equilibrium quan-
tities such as magnetic field are approximated to be linearly
varying in the radial coordinate, although plasma inertia and
resistivity are retained.">'® Careful treatment is also required
for this inner-layer equation since it has irregular singular
points at infinity and the solution has an infinite norm.>'""’
The response formalism’ has been adopted to resolve this
problem and was successfully applied to an initial-value
problem. 118

In the present paper, we propose a new method for com-
puting the linear stability of resistive MHD modes via
matching technique, where the plasma region is divided into
ideal MHD regions and an inner region with finite width.
Asymptotic solutions around the mode-resonant surface are
not used in our numerical matching technique. The advan-
tages to use the inner region with finite width are as follows.
The most crucial feature is that our numerical matching tech-
nique is applicable to reversed magnetic shear plasmas of
their minimum safety factors being rational numbers. The
conventional asymptotic analysis fails for these cases since
the Frobenius series solution of the Newcomb equation used
for the asymptotic matching can be obtained only if the
mode-resonant surface is a regular singular point as men-
tioned above. If the mode-resonant surface has the minimum
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safety factor in the reversed magnetic shear plasma, then it is
an irregular singular point of the Newcomb equation. Sec-
ondly, an important feature is related to the sensitivity on the
numerical accuracy. It is known that matching data, obtained
from the outer solution, are sensitive to the local accuracy of
MHD equilibrium and the local grid arrangements around
the mode-resonant surface even for normal magnetic shear
plasm21s.l4’19 Since we will use the inner region with finite
width, we do not need to integrate the Newcomb equation so
close to the mode-resonant surface. Then the sensitive be-
havior on the local properties can be fully avoided. Thirdly,
there is no irregular singularity in the inner-region equation
since the stretched radial coordinate is not used; we do not
need to consider infinity in the stretched radial coordinate.
Finally, this method can be easily applied to initial-value
problems, as shown in Sec. II. This can lead to a study of
nonexponential behavior. We also expect that our method can
be extended to study weakly nonlinear phenomena. Needless
to say, more detailed model equations can be adopted as the
inner-region equation, which is one of the advantages to uti-
lize the matching method. Note that the scope of this paper is
to develop a method applicable to the simplest linear stability
problem, though we expect that this can provide a basis for
those future extensions.

In the inner region, the high-beta reduced MHD
equationzo’21 is solved. Then the solution is matched onto the
solution of the Newcomb equation by using boundary con-
ditions developed in Sec. II C. We will observe good conver-
gence of the solutions to those obtained by solving the resis-
tive reduced MHD equations in the whole plasma region. As
we will see, the width of the inner region can be 1% of the
minor radius or less for the Lundquist number of 10'2) al-
though it, of course, depends on equilibrium parameters such
as magnetic shear and the Lundquist number.

The matching technique using an inner region with finite
width was originally developed for ideal MHD modes in a
cylindrical geometry, and good performance was shown."”
Recently, it was applied to resistive wall mode stability
analysis including toroidal rotation in a cylindrical
geometry.22 Our method extends this idea to resistive MHD
modes. The main difficulty in this extension is that the lin-
earized resistive MHD equation has more independent solu-
tions than the linearized ideal MHD equation since the resis-
tivity increases the order of derivatives. Thus, an appropriate
set of independent solutions in the inner region needs to be
selected when matching onto the solution in the ideal MHD
region. In order to resolve this difficulty, we have developed
a boundary condition that selects independent solutions suit-
able for matching onto the solution in the ideal MHD region.
As explained in the main text, this boundary condition is
imposed on the stream function of the perturbed velocity
field and makes the parallel electric field smoothly approach
ZEero.

The present paper is organized as follows. Our numerical
matching technique using an inner region with finite width is
developed in Sec. II as an eigenvalue problem. Several ex-
amples are shown for tearing, internal kink, and resistive
interchange modes in normal magnetic shear plasmas and
double tearing mode in reversed magnetic shear plasmas. In
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the normal magnetic shear plasmas, the conventional
asymptotic matching theory predicts that the growth rate vy is
proportional to 77> for the tearing mode and 7"? for the
internal kink and resistive interchange modes, respectively,
where 7 is the resistivity. We will show that our numerical
matching technique reproduces these # dependence of y
when 7 is small enough so that the conventional asymptotic
matching theory serves as a good approximation. We will
also show that our numerical matching technique is also ap-
plicable to relatively large 7, where the assumption for the
conventional theory breaks down and the # dependence de-
viates from 7% or 5'?. As for the double tearing mode, we
will show that our numerical matching technique is also ap-
plicable to the case where the mode-resonant surface be-
comes an irregular singular point of the Newcomb equation.
Next, the application to the initial-value problem is devel-
oped in Sec. III. An implicit time-integration scheme is used.
In Sec. IV, a discussion is given on the application of the
present numerical matching method to the stability calcula-
tions of high-beta plasmas in a toroidal geometry. Conclu-
sions are given in Sec. V.

Il. LINEAR EIGENVALUE PROBLEM
A. Settings and governing equations

Let us consider a cylindrical finite-beta plasma with a
fixed boundary. The cylindrical coordinate system (r, 6,z) is

used, and the unit vectors in each direction are F, é, and Z,
respectively. Toroidal angle { is defined by z/R,, where
2mR, is the length of the plasma column. Perturbed quanti-
ties are assumed to have the spatial dependence el#+9),
where m and n are the poloidal and toroidal mode numbers,
respectively. The plasma minor radius is a. The aspect ratio
A:=Rg/a is assumed to be large. The inverse aspect ratio is
denoted by £:=1/A. All the calculation data presented in the
following are obtained for A=10.

For a case of normal magnetic shear or monotonic safety
factor g profile, let us assume that there is a mode-resonant
surface at r=r, inside the plasma region. For a case of re-
versed g profile, we assume that the minimum safety factor
Gmin appears at r=rp;,. When ¢q.,;, <<m/n, the corresponding
mode-resonant surfaces appear at both sides of r=r;,. When
we divide the plasma region into an inner region and outer
regions, the inner region rp <r<ry is taken to cover the
mode-resonant surface(s). The width of the inner region is
defined by Ar:=rg—r;. Then the outer regions extend from
r=0 to r=ry and from r=ryp to r=a. The inertialess MHD
equation, or the Newcomb equation,12 is solved in the outer
regions. In the inner region, on the other hand, the high-beta
reduced MHD equations are solved. Then the solution in
each region will be connected by the technique developed
below.

In the following, the quantities are normalized by using
a, By that is the magnitude of the ambient magnetic field in
the z direction, py that is the mass density assumed to be
constant, v == By/ \ opo, Where g is the vacuum permeabil-
ity, and 7p:=a/v,.
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The governing equations adopted in the present paper is
the large-aspect-ratio and high-beta reduced MHD

. 20,21

equations,
dUu
_=—VH]+i'K0Xle, (1)
dr
Y
—+V,o=1nJ, 2
ot 1P = 7 (2)
d
d—i’:-i.vlﬁwi. (3)

Here, the velocity and magnetic fields are expressed by

v=Z X Ve, (4)

B=VyXiti. (5)

The vorticity in the z direction and the current in the negative
z direction are expressed as

U=V’g, (6)

I=V3iy, (7)

respectively, where Vi means the Laplacian in the -6 plane
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i ( d ) 1 P )

L ror r&r +r2&02' @®
The equilibrium pressure is expressed by S and the perturbed
pressure by p. The equilibrium magnetic field curvature is
defined by &,:=bgy-Vb,, where by is the unit vector in the
direction of zeroth order magnetic field. Although by=2Z and
thus K becomes zero in the large-aspect ratio limit, we take
into account the equilibrium poloidal magnetic field, and we
set k- Ti= K0,=—B(2)0/ r. The convective and parallel deriva-
tives are given by

d d

= + 9 b 9
L= e ] ©)
v ’ [, ] (10)
=e__— ) 3
Il a
respectively, and the Poisson bracket is defined as

&_fﬁ_g_ﬂ_fﬁ_g) an

1
s ::A.V XV = —
fogls=2-Vf & (&rr?a d6 or

’
The electrical resistivity is denoted by #, which is the inverse
of the Lundquist number.

Assuming that there is no equilibrium plasma flow, lin-
earized reduced MHD equations are written as

’ . Jr : .
0 ~ (ins— 1m¢//0)vi _imJo imk,
2 r r r
Vi 0 0\[e . ¢
0 10| ¢]= —(ms—lm%) V2 0 vl (12)
r
0 0 1/\p ., )4
impB 0 0
r

where the time dependence is assumed to be e, y(r) de-
notes the equilibrium component of i, and J,:= Vi . The
prime denotes the derivative with respect to r, unless other-
wise stated.

B. Outer region

In the outer region, the plasma inertia and the electrical
resistivity are neglected: y and 7 are set to be zero in Eq.
(12). Then the Newcomb equation is obtained as follows:

11( d_w> {(z) I/
rdr rdr r er(n/m+ 1/q)

KOrIB,

- 2r¥(n/m + 1/¢)*

}l//=0, (13)

where g=er/ B is the safety factor with B,=—y as the equi-
librium poloidal magnetic field.

We solve Eq. (13) in 0=r=yr; with the following
boundary conditions:

Gour(r) =" as r—0, (14)

Gour(r) = 1. (15)

Then, ¢ can be expressed as

dfout,L(r) = lvl’LGout,L(r)- (16)

The factor e!"#*"9 is omitted for simplicity of the notation.
The function G, (r) can be considered as a Green’s func-
tion, and the amplitude coefficient ¢; will be determined
later.

Similarly, we solve Eq. (13) in rg=r=1 with the fol-
lowing boundary conditions:

Goul,R(rR) =1, (17)
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Gout,R(l) =0. (18)
Then, ¢ can be expressed as

%ut,R(r) = ‘/’RGout,R(”)~ (19)

Finally, we would like to mention that our matching
technique can also be applied for free boundary modes by
changing the boundary condition G, g(1)=0 to an appropri-
ate one.

C. Inner region

In the inner region, we solve Eq. (12). This equation is
not the so-called “inner-layer equation” where the radial co-
ordinate and the frequency are expanded by using a small
parameter related to resistivity.

In order to obtain Green’s functions in the inner region,
we solve Eq. (12) as a boundary-value problem by giving a
guess value . Let us denote G="(¢, ¢/, p). Since the pressure
equation has no radial derivative in Eq. (12), the order of
radial derivative of Eq. (12) is 4 in total, and thus four inde-
pendent solutions can be obtained for the following four
boundary conditions:

*
Gin,L,1(”L)= L, Gin,L,l(rR)= 0 [, (20)
1

Gin,L,Z(rL)z 0|, Gin,L,z("R)= 01, (21)
*

Gin,R,l(rL)= 0], Gin,R,l(rR)= I, (22)
1

Giro(r)={ 0 [, Gprolrr)=|0 [, (23)

where the meaning of the asterisks will be explained in the
following three paragraphs, and — in each third row means
that no boundary condition is required for p since there is no
radial derivative of p. When we include a heat diffusivity
term, XVip, on the right-hand side of the pressure equation,
we need a boundary condition also for p. This is described in
Appendix A. The ¢ component of Gj, (r), denoted by
Ginp.1(r), becomes unity at r=r; and becomes zero at the
other side r=rg. On the other hand, Gy, r 1(r) becomes zero
at r=r;, and becomes unity at the other side r=ri. As for
Giy12(r) and Gy, g »(r), the ¢ components become unity at
r=ry, and rg, respectively, and the ¢ components becomes
zero at both sides. This choice of the Green’s functions gives
us four independent solutions suitable for the inner region or
the resistive MHD region.

The asterisks that appeared in the boundary conditions
(20)—(23) denote that a boundary condition of the third kind
is imposed for ¢,
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d "o =
do _ (ﬁ ﬁM) . 24)
dr Y rine —imyylr
This is obtained from the linearized ideal Ohm’s law,
imy,
E=—7¢—(i”€— %)<P=0 (25)
r

and its radial derivative E| =0, where E; denotes the parallel
electric field. Since the solution in the inner region must
match onto the solution in the outer region where the ideal
MHD equation is satisfied, E; must approach zero smoothly
as approaching the boundaries of the inner region. Thus, we
require E; and E approach zero smoothly. Equation (24) was
derived by using these conditions. However, the inverse is
not necessarily true; E;=0 and E| =0 lead to Eq. (24), but Eq.
(24) does not necessarily lead to E;=0 and E =0. If we
assume that Eq. (24) is given, E| can be expressed as

imy, imy |’
E’:—yz//—(ins— l/lo)@'—(ins— %) 1)
r r

!
=E ui : (26)

¥
From the first to the second line, Eq. (24) was used to elimi-
nate ¢'. Therefore, when Eq. (24) is imposed, E| approaches
zero if Ej approaches zero. Therefore, Gy, 1 1 and Gy, g | are
chosen so that E; and E| approach zero smoothly at both
sides r=ri and rg, and the ¢ components of Gy, | (Gi,r.1)

are unity (zero) at r=r; and zero (unity) at r=rg.

Let us examine the consistency of our boundary condi-
tion (24) with the asymptotic behavior of E in the conven-
tional asymptotic matching theory. The inner-layer equation
can be written as

Ce_ &y
F@ =—1X@ +iDgP, (27)
. d*y
IN'y=-iXe+ e (28)
I'P=igp, (29)
where [:=y/{y{me(1/q)' T} and  X:=(r-ry)/

{n/[me(1/q)']}'* are the stretched growth rate and radial
coordinate, respectively, P:=p(r/mB"){nlme(1/q)' T} is
the scaled perturbed pressure, and Dg:=—8'(q/q’)?*/r is the
Suydam index.” All the equilibrium quantities are evaluated
at the mode-resonant surface r=r,. Assuming the inverse-
power series in |X| at large |X|, we obtain the following big
and small solutions in the leading order as

= =il g(X]7V27# + ap g|X|712), (30)
= R(IX]"27# 4 ap g X]'H), (31)
P= % g g(X[7V27H 4 ap g|X[714), (32)

where .1 and ¥, are the arbitrary amplitude coefficients
at X — - and X — 4+, respectively, and a; and ag are the
corresponding matching data. In the vorticity equation, we
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take the plus sign on the right-hand side for X — —o and the
minus sign for X —oo. In the pressure equation, we take the
minus sign on the right-hand side for X— —o and the plus
sign for X — 0. By using these asymptotic forms, we obtain

1d -1
= (33)
@dX  [X|(1+apg|X])
1d +
‘ﬁ_ aLRr (34)

@d_X - (1 +aL,R|X|)'

On the other hand, let us derive an asymptotic form of
our boundary condition (24). In the region near the mode-
resonant surface, Eq. (24) can be approximated as

(YL
¢ —(l// x><P~ (35)

By introducing the stretched radial coordinate X, this can be
rewritten as

do _(ldy 1
dX_<¢dX X)‘P' (36)

By substituting Eqgs. (33) and (34) into this equation, we can
confirm that the asymptotic form of our boundary condition
is satisfied by Egs. (33) and (34). Therefore, the boundary
condition (24) is consistent with the conventional asymptotic
matching theory in the limit of infinitely thin inner layer.

There is no need to refer to Gy, , and Gy, g, actually
since only two of the four Green’s functions can be matched
onto the solutions in the ideal MHD region and since the
boundary conditions for Gy, ; and G;, g are chosen so that
they can be matched onto the solutions in the ideal MHD
regions. Thus, redefining Gy, ; and Gj,r; as Gy, and
G, r, respectively, then the solution in the inner region can
be expressed as

()
U | = Ginr(r;y) + YrGir(r:y). (37)
p

In Eq. (24), ¢’ / i appears on the right-hand side. It is evalu-
ated as G}, 1/ Goyr at r=r and G} g/ Goy g at r=rg. When
the matching is completed and the eigenfunctions are ob-

tained, these replacement is valid.

D. Dispersion relation

The ¢ component of Eq. (37),

r) = l/fLGin,L(r§ Y) + ’/’RGin,R(r; Y, (38)

has been already chosen to be continuous across the bound-
aries r=rp and rg, where Gy, and Gy, r denote the ¢ com-
ponents of Gy, and Gy, g, respectively. We further impose
continuity of d¢/dr across the boundaries r=r; and rg, then
we obtain the following dispersion relation:
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FIG. 1. Equilibrium ¢ and ¢’ (r) profiles for the calculation of m/n=3/2 and
2/1 tearing modes in normal magnetic shear plasmas.

(Gi’n,L(rL; ) - G(,)ut,L(rL) Gi,n,R(rL; Y) )
Gi’n,L(rR; Y) Gi’n,R(rR; Y) - Géut,R(rR)

lﬂL)
=0. 39
X<¢/’R (39)

If we denote the matrix on the left-hand side as A(y), the true
eigenvalue vy can be obtained by det A(y)=0. In numerical
calculations, the Newton—Raphson method was used to ob-
tain the true eigenvalue starting from a guess value 7.

E. Applications

1. m/n=3/2 and 2/1 tearing modes in normal
magnetic shear plasmas

The first application is to the m/n=3/2 and 2/1 tearing
modes in normal magnetic shear plasmas. The conventional
asymptotic matching theory has been developed for these
modes, and the resistivity dependence of the growth rate is
known to be 77>, It will be shown below that our numerical
matching technique reproduces this dependence, especially
when the resistivity is small enough or when the conven-
tional asymptotic matching method gives us a good approxi-
mation.

The equilibrium current density profile is set to be j(r)
=jo(1-r%) with ¢g,=2.8. Then the radial positions of the
mode-resonant surfaces are r=0.365 and 0.774 for m/n
=3/2 and 2/1, respectively. The equilibrium ¢ and ¢’ profiles
are shown in Fig. 1. The equilibrium pressure is assumed to
be zero. The tearing mode stability parameters are A’ =6.74
and 13.9 for m/n=3/2 and 2/1, respectively.

First of all, the growth rate y of the tearing mode, cal-
culated by our numerical matching technique, is plotted as a
function of plasma resistivity # in Fig. 2. By the conven-
tional asymptotic matching, the growth rate in the physical
dimension is obtained as®*
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Numerical (m/n=3/2) ——
Asymptotic matching (m/n=3/2) -~

Numerical (m/mn=2/1) ——
Asymptotic matching (m/n=2/1) -------

107"

107 12 10 9 8 7 6
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n

FIG. 2. Eigenvalues y of m/n=3/2 and 2/1 tearing modes in normal mag-
netic shear plasmas are plotted as a function of the plasma resistivity 7. At
sufficiently small 7, our results agree well with the results by the conven-
tional asymptotic matching theory. At relatively large 7, the conventional
asymptotic matching theory cannot be applied. Even for this range of #, our
numerical matching technique is applicable, and we observe the deviation
from the y 7% dependence.

0.55 [ anaq’
Vphys = T3R/57i/5 R

where 7:=uoa’/ 7 is the resistive time, 7,:=v,/a is the
Alfvén time, a and R are the minor and major radii, respec-
tively, n is the toroidal mode number, and ¢ and ¢’ are the
safety factor and its radial derivative, respectively. By using
the normalization in our paper and substituting the param-
eters used in the numerical calculation, the growth rates can
be expressed as y=0.9137%> and 1.877%*> for m/n=3/2 and
2/1, respectively. These are plotted together in Fig. 2. We
observe good agreement between them at sufficiently small
7. We also observe that y deviates from the 7°"> dependence
at relatively large 7, where the assumption for the conven-
tional asymptotic matching theory breaks down. Our numeri-
cal matching technique is also applicable to this range of 7.
In calculating this growth rate, the inner region was chosen
such that it is centered at the mode-resonant surface. For
7=107'2, the inner-region width was 0.16 with 1302 accu-
mulated grids for m/n=3/2 and 0.08 with 1024 uniform
grids for m/n=2/1, respectively. For larger 7, wider Ar is
required to obtain sufficient accuracy; however, the number
of grids in the unit width of the inner region can be reduced.
For example, 80 grids in Ar=0.1 were sufficient to obtain
good accuracy for 5=107%.

Figure 3 shows the eigenvalue y as a function of Ar,
normalized by yjoba, Which is the growth rate obtained by a
calculation where Eq. (12) was solved as an eigenvalue prob-
lem in the whole plasma domain without the numerical
matching. Figures 3(a) and 3(b) are for m/n=3/2, and Figs.
3(c) and 3(d) are for m/n=2/1. At Ar=1, Ygopy is just plot-
ted. The horizontal axis label is Ar for Figs. 3(a) and 3(c)
and Ar/x, for Figs. 3(b) and 3(d), where x, is the resistive-
layer width defined by x,:=|r/nBq'|"* 5" evaluated at the
rational surface. The resistive-layer widths in this case are

25
) (aA")*”, (40)
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FIG. 3. (Color online) Eigenvalues of m/n=3/2 and 2/1 tearing modes in
normal magnetic shear plasmas, normalized by eigenvalues obtained with-
out numerical matching technique. The horizontal axis labels are (a),(c) Ar
and (b),(d) Ar/x,. The error of ¥/ Yyopa is less than several percent even if
the inner-region width is only five times the resistive-layer width.

x,=2.32%"3 and 2.08 %" for m/n=3/2 and 2/1, respectively.
When the width of the inner region Ar is changed, the radial
grid size was kept unchanged. We find that vy is accurately
obtained by this numerical matching technique. The error of
Y/ Yaiobar 1S several percent or less when the inner-region
width is taken as five times the resistive-layer width. This
accuracy would be sufficient in actual applications. The be-
havior of y/ ¥gopa as a function of Ar/x, is similar for a
range of 7 in both cases of m/n=3/2 and 2/1. The data
points seem to be on a curve especially for m/n=2/1. There-
fore, the convergence property seems to be uniform. A
smaller Ar can be used when the magnetic shear is larger.

Figure 4 shows the eigenfunctions for »=107%. Figures
4(a)-4(c) are Im ¢, Re ¢, and Re E, for m/n=3/2, respec-
tively, and Figs. 4(d)-4(f) are Im ¢, Re ¢, and Re E; for
m/n=2/1, respectively. The equation for the perturbed pres-
sure p decouples from the others, and thus no figure is shown
for p. The parallel electric field E; was calculated after the
eigenfunctions ¢ and ¢ were obtained. The eigenfunctions in
the inner region obtained by the numerical matching are
overlaid on the eigenfunctions by the global calculation
(without the matching). We find that the eigenfunctions agree
well with those of the global solution.

As the plasma resistivity is decreased, the mode struc-
ture becomes more localized around the mode-resonant sur-
face. Thus, we can use smaller Ar for obtaining sufficiently
accurate eigenvalues and eigenfunctions. Thus, the computa-
tional cost is reduced significantly. Therefore, this matching
technique is more advantageous especially for high-
temperature plasmas.
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FIG. 4. (Color online) Eigenfunctions of [(a)—(c)] m/n=3/2 and [(d)-(f)]
m/n=2/1 tearing modes in normal magnetic shear plasmas with 7=107%.
(a) and (d) are imaginary parts of ¢, (b) and (e) are real parts of i, (c) and
(f) are real parts of E,. We find good agreement between the eigenfunctions
with and without our numerical matching technique.

2. m/n=1/1 internal kink modes in normal magnetic
shear plasmas

The second application is to the m/n=1/1 internal kink
mode in normal magnetic shear plasmas. The conventional
asymptotic matching theory has also been developed for this
mode, and the resistivity dependence of the growth rate is
known to be 7'. It will be shown below that this depen-
dence is also reproduced by using our matching method, like
m/n=3/2 and 2/1 tearing modes, especially when the resis-
tivity is small enough or when the conventional asymptotic
matching method gives us a good approximation.

The equilibrium current density profile is set to be again
jl(r)=jio(1=r?) with g,=3.95. Then the mode-resonant sur-
face for m/n=1/1 mode appears at r=0.05. The equilibrium
q and ¢' profiles are shown in Fig. 5. The equilibrium pres-
sure is assumed to be zero. In this case, r; was set to be zero,
and the boundary condition ¢(0)=¢(0)=0 was used. The
present matching method works well, of course, even for this
one-sided situation.
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FIG. 5. Equilibrium ¢ and q'(r) profiles for the calculation of m/n=1/1
internal kink modes in normal magnetic shear plasmas.

Figure 6 shows the growth rate y of the internal kink
mode, calculated by our numerical matching technique as a
function of plasma resistivity 7. By the conventional
asymptotic matching, the growth rate in the physical dimen-
sion is obtained as>*

! !/_ 3
(q'By/\pop)*?

(por*1m)' 0

Vphys =
By using the normalization in our paper and substituting the
parameters used in the numerical calculation, the growth rate
can be expressed as y=0.029%!3. This is plotted together in
Fig. 6. We observe good agreement between them at suffi-
ciently small 7. We also observe that y deviates from the
7'3 dependence at relatively large 7. This deviation is be-
cause the assumption for the conventional asymptotic match-
ing theory breaks down at large 7. Also y seems to be af-

10—
—— Numerical
-------- Asymptotic matching -~
4 | T
10
=107
10°°
10-7 1 11 11 11 110 19 18 17 6
10009010 "%0°108107 10

n

FIG. 6. Eigenvalues y of m/n=1/1 internal kink modes in normal magnetic
shear plasmas are plotted as a function of the plasma resistivity 7. At suf-
ficiently small 7, our results agree well with the results by the conventional
asymptotic matching theory. At relatively large 7, the conventional
asymptotic matching theory cannot be applied. Even for this range of 7, our
numerical matching technique is applicable, and we observe the deviation
from the yo 7' dependence.
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FIG. 7. (Color online) Eigenvalues of m/n=1/1 internal kink modes in
normal magnetic shear plasmas, normalized by eigenvalues obtained with-
out numerical matching technique. The horizontal axis labels are (a) Arg
and (b) Arg/x;,. The error of 7/ Yggpy is much less than 1% even if Arg is
only one resistive-layer width.

fected by the boundary condition at the magnetic axis since
the mode-resonant surface for g=1 is close to the magnetic
axis, especially when 7 is large. Our numerical matching
technique is also applicable to this range of parameters. The
width of the inner region Arg=0.01 was used for 7=10""4,
where Ary denotes the distance from the mode-resonance
r¢=0.05 to the boundary ri. The number of grids was 500 in
the inner region of the total width Ar=0.06. For larger 7,
wider Ary is required to obtain sufficient accuracy; however,
the number of grids in the unit width of the inner region
can be reduced. For example, 80 grids in the total width
Ar=0.1 were sufficient to obtain good accuracy for 7=107%.

Figure 7 shows the normalized eigenvalues. The hori-
zontal axis label is Arg for (a) and Arg/x, for (b), where the
resistive-layer width is x,=5.85%"3 in this case. Even if Arg
is one or two times the resistive-layer width, the error of
Y/ Yaiobar 18 much less than 1%. Since the error is too small,
we cannot observe clear convergence property in this case.
Figure 8 shows the eigenfunctions for 7=107%. The eigen-
functions in the inner region obtained by the numerical
matching are overlaid on the eigenfunctions by the global
calculation (without the matching). The eigenfunctions ob-
tained by using our numerical matching technique agree well
with those of global calculation. As in the tearing mode cases
presented above, a better convergence is obtained even for
smaller Arg when the magnetic shear is larger.

Stability of internal kink mode is an essential factor in
studying sawtooth oscillations.** Two-fluid effects seem to
be required at least to explain characteristics of sawtooth.
One of the advantages to use the inner layer, both in the
conventional asymptotic matching theory and in our numeri-
cal matching technique, is that the inner-layer equation can
be extended to include such effects relatively easily. Exten-
sion of the present technique and its application to the saw-
tooth problem may be a future issue.

Finally, we would like to mention that the numerical
matching for large r, say r,=0.5, with r; #0 does not give
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FIG. 8. (Color online) Eigenfunctions of m/n=1/1 internal kink modes in
normal magnetic shear plasmas with 7=107%. (a) Imaginary part of ¢, (b)
real part of i, and (c) real part of E;. We find good agreement between the
eigenfunctions with and without our numerical matching technique.

good accuracy, especially when the resistivity is not suffi-
ciently small. Among applications we have done, this inter-
nal kink mode with large r, and large 7 was only the special
case. This situation is discussed in Appendix B.

3. m/n=2/1 resistive interchange modes in normal
magnetic shear plasmas

The third application is to the m/n=2/1 resistive inter-
change mode in normal magnetic shear plasmas. The con-
ventional asymptotic matching theory predicts that the resis-
tivity dependence of the growth rate is %', It will be shown
below that our numerical matching technique reproduces this
dependence, especially when the resistivity is small enough
or when the conventional asymptotic matching method gives
us a good approximation.

The equilibrium safety factor profile is set to be g(r)
=qa/ =)+ B,(r—r)e "Ly with g,=3.5, B,=-0.3, and
L,=0.1. When S,=0, this g profile corresponds to the toroi-
dal current density profile j,(r)=j,(1-7%) used in the previ-
ous subsections. In order to stabilize the m/n=2/1 tearing
mode, the modulation term proportional to 3, is introduced,
which makes the g profile flatter around r=r; when g, <0.
The mode-resonant surface for m/n=2/1 mode appears at
r=0.5. The equilibrium ¢ and ¢’ profiles are shown in Fig.
9(a). In addition, finite equilibrium plasma pressure B(r) is
introduced in this subsection. The profile is set to be
B(r)=p,(1-r?) with B,=0.01. This is plotted in Fig. 9(b),
together with the Suydam index Dg. This equilibrium is
Suydam stable at r=r,. The tearing mode parameter is
A'=-22.3 for By=0 and A’=-3.23 for £,=0.01.

Figure 10 shows the growth rate vy of the resistive inter-
change mode, calculated by our numerical matching tech-
nique, as a function of plasma resistivity 7. By the conven-
tional asymptotic matching, the growth rate is known to be
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FIG. 9. Equilibrium ¢, ¢', B, and Dg profiles for the calculation of
m/n=2/1 resistive interchange modes in normal magnetic shear plasmas.
(a) ¢ and ¢’, (b) B and Dy.

proportional to 7'?. We observe good agreement between

our numerical results with the analytic scaling at sufficiently
small 7. We also observe that y deviates from the %' de-
pendence at relatively large # as in the tearing and internal
kink modes, where the assumption for the conventional
asymptotic matching theory breaks down. Our numerical
matching technique is also applicable to this range of #. In
calculating this growth rate, the inner region was chosen
such that it is centered at the mode-resonant surface. The
width of the inner region Ar was 0.01 for 7=107'2, and 512
uniform grids were used in the inner region. On the other
hand, 80 grids in Ar=0.1 were sufficient to obtain good ac-
curacy for 7=1078,

Figure 11 shows the eigenvalue y normalized by ¥,jopar-
The horizontal axis label is Ar for (a) and Ar/x, for (b),
where the resistive-layer width x,=3.19%" in this case.
When the width of the inner region Ar is changed, the num-
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FIG. 10. Eigenvalues y of m/n=2/1 resistive interchange modes in normal
magnetic shear plasmas are plotted as a function of plasma resistivity 7. At
sufficiently small 7, the conventional asymptotic matching theory predicts
yo n'3, and our results agree well with it. At relatively large 7, the conven-
tional asymptotic matching theory cannot be applied. Even for this range of
7, our numerical matching technique is applicable, and we observe the
deviation from the y= %' dependence.
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FIG. 11. (Color online) Eigenvalues of m/n=2/1 resistive interchange
modes in normal magnetic shear plasmas, normalized by eigenvalues ob-
tained without numerical matching technique. The horizontal axis labels are
(a) Ar and (b) Ar/x,. The error of /Yy, is Well within several percent
even if the inner-region width is only several times the resistive-layer width.

ber of grids were kept constant as 80 in the interval of 0.1 in
the r direction. Even if the inner-region width is several
times the resistive-layer width, the error of y/ ygigpar is well
within several percent. This accuracy would be sufficient for
actual applications. The normalized growth rate y/ Ygiopar 18
on a curve as a function of Ar/x, for a range of ». Therefore,
the convergence property seems to be uniform.

Figure 12 shows the eigenfunctions for 7=1078. The
parallel electric field E; was calculated after the eigenfunc-
tions ¢ and ¢ were obtained. The eigenfunctions in the inner
region obtained by the numerical matching are overlaid on
the eigenfunctions by the global calculation (without the
matching). We find that the eigenfunctions agree well with
those of the global solution.

4. m/n=2/1 double tearing modes in reversed
magnetic shear plasmas

The final and important application is to the m/n=2/1
double tearing mode in reversed magnetic shear plasmas. As
explained in Sec. I, the conventional asymptotic matching
theory fails when the minimum safety factor is a rational
number since that mode-resonant surface becomes an irregu-
lar singular point. In addition to this rather mathematical
reason, another importance of the application to the double
tearing mode is that the stability calculation of the mode
itself is an important issue for clarifying the behavior of re-
versed magnetic shear plasmas when the minimum safety
factor tries to go through rational numbers during current
ramp up; a disruption often occurs in experiments even if the
beta is low.

We assume the equilibrium safety factor g profile as

r\4 r\2
q(r) =gmin| (@=D{ — | =2(a=1D| — | +a| (42)
min min
with 7,;,=0.6 and a=3. The equilibrium ¢ and ¢’ profiles

with g,;,=2 are shown in Fig. 13. The equilibrium pressure
is assumed to be zero.
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FIG. 12. (Color online) Eigenfunctions of m/n=2/1 resistive interchange
modes in normal magnetic shear plasmas with =107%. (a) Imaginary part of
¢, (b) real part of , (c) real part of p, and (d) real part of E;. We find good
agreement between the eigenfunctions with and without our numerical
matching technique.

Figure 14 shows the growth rate y as a function of q;,.
These data were obtained without the numerical matching
technique as a reference. The growth rate 7y is larger for
larger plasma resistivity #n when g, is relatively small or
when the distance between two mode-resonant surfaces Ar;
is large. On the other hand, when ¢,,;, becomes close to 2, y
decreases rapidly for larger 7, and thus y becomes larger for
smaller 7. This is related to the distance between two reso-
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FIG. 13. Equilibrium ¢ and ¢’ (r) profiles for the calculation of m/n=2/1
double tearing modes in reversed magnetic shear plasmas. Plotted is for
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FIG. 14. Eigenvalues y of m/n=2/1 double tearing modes in reversed
magnetic shear plasmas for plasma resistivities of 7=107°, 1077, and 1078,

nant surfaces and the resistive-layer width. When 7 is small
enough, the corresponding resistive layer is thinner than Ar,.
If Ar, is small, the mode structure becomes double tearing
type. When Ar, becomes large enough, on the other hand, the
mode structure becomes like two single tearing modes.*®
When Ar, is small and the resistivity is large enough, two
resistive layers at each mode-resonant surface overlap each
other. The resistivity dependence of the growth rate depends
on the relationship between Ar, and resistive-layer width.
Figure 15 shows the resistivity z dependence of the
growth rate y for ¢g,;,=1.99 as an example. These data were
obtained without the numerical matching technique again as
in Fig. 14. The growth rate y decreases as 7 is increased
around 7~ 107, On the other hand, 7 is proportional to 7'
for small #. The dependence of the growth rate 7y on the
plasma resistivity # for m/n=3/1 double tearing modes was
obtained numerically in Ref. 26. It was shown that the expo-
nent x, if we assume that yx 7", takes a value from 1/3 to
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FIG. 15. Eigenvalues y of m/n=2/1 double tearing modes in reversed
magnetic shear plasmas with g,;,=1.99 are plotted as a function of the
plasma resistivity 7. Although this figure was plotted without the numerical
matching technique as a reference, we stress that the numerical results by
our numerical matching technique agree well with this magnitude of the
growth rate as well as the resistivity dependence.
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FIG. 16. Eigenvalues of m/n=2/1 double tearing modes in reversed mag-
netic shear plasmas with 7=10"%, normalized by eigenvalues obtained with-
out numerical matching technique, as a function of g,,;, and the inner region
width Ar. As g, becomes closer to 2, Yyopa itself approaches 0, and there-
fore ¥/ Ygiona takes a rather large value. The distance between g=2 surfaces
for gpmin=1.9 is about 0.1, which is the reason of large errors for Ar=0.1 in
the range of g,;,=1.92.

3/5, depending on the distance between the two mode-
resonant surfaces Ar,. When Ar is small, x=1/3, and the
mode has the double tearing type structure. On the other
hand, x=3/5 when Ar is large, and the mode has something
like two single tearing type structure. As for our calculation
results, the mode structure was double tearing type even for
7=10""2. Thus, the dependence y= %' approximately is
reasonable. We mention that the magnitude of y as well as
the same 7 dependence was obtained by using the numerical
matching technique for wide range of .

Figure 16 shows the growth rate for =107, normalized
by the growth rate obtained without the numerical matching
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FIG. 17. (Color online) Eigenfunctions of m/n=2/1 double tearing modes
in reversed magnetic shear plasmas with g,,;,=1.999 and %=107%, (a) Imagi-
nary part of ¢, (b) real part of #, and (c) real part of E;. We find good
agreement between the eigenfunctions with and without our numerical
matching technique.

Phys. Plasmas 17, 052502 (2010)

0
o L
£ -0 1
3 global — -
02} (a) ar=0.2 ¢
L global — |
2ol ) 852
> s 0.1 v
(0]
o 04r1
0
2e-05
S |
£ -26-05 1
o =€ - global — -
-4e-05 I (C) 1 Ar=8:$ 3
0 0.2 0.4 0.6 0.8 1

r

FIG. 18. (Color online) Eigenfunctions of m/n=2/1 double tearing modes
in reversed magnetic shear plasmas with ¢g,,;,=1.95 and =108, (a) Imagi-
nary part of ¢, (b) real part of ¢, and (c) real part of E,. We find good
agreement between the eigenfunctions with and without our numerical
matching technique.

technique, as a function of g;,. In the range of 1.94=¢q.,
<2, no dependence on Ar is observed; it means that
Ar=0.1 is wide enough for the equilibrium parameters used
for these calculations. Actually, if we try to define a resistive-
layer width x, for a case of ¢, being a rational number and
q' =0 there, x,:=|2r/nByq"|"*n"* evaluated at the rational
surface. This is obtained by taking a balance of terms in the
low-beta reduced MHD equation around the rational surface.
Then, x,=0.0037 in this case. Therefore, Ar=0.1 means
Ar/x,=27, which is sufficiently large. As ¢, becomes
closer to 2, we observe the increase in y/ Ygiona @bove unity,
although it is still of the order of 1%. This is because that
Yelobal itself goes to 0 as gy, goes to 2, and thus it is difficult
to keep numerical accuracy. If the growth rate is not so close
to 0 even for ¢,,;,=2 by taking account of finite pressure
effect, for example, a good numerical accuracy is obtained. A
good convergence cannot be obtained if the two g=2 sur-
faces are located so close to the boundaries r;, and rg. For
gmin=1.9, the distance between two g=2 surfaces is about
0.1, which is the reason of the large errors for Ar=0.1 in the
range of g,,;, = 1.92. In this situation, it is better to locate two
inner regions at the two g=2 surfaces and to match these
solutions onto the solutions in the three ideal MHD regions.

Figures 17 and 18 show the eigenfunctions for
Gmin=1.999 and 1.95, respectively. The parallel electric field
E, was calculated by using the eigenfunctions ¢ and . The
eigenfunctions in the inner region obtained by the numerical
matching are overlaid on the eigenfunctions by the global
calculation (without the matching). Good agreement with the
global calculation is obtained.
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lll. LINEAR INITIAL-VALUE PROBLEM
A. Settings

In this section, the numerical matching technique is ap-
plied to the calculation of the tearing mode stability via an
initial-value problem. The setting of the problem such as
the aspect ratio is the same as in Sec. II for the eigenvalue
problem.

B. Outer region

In the outer region, we solve the Newcomb equation (13)
to obtain the Green’s function as in the eigenvalue problem.
Then we express the solutions as

lzb'out,L(ra t) = lﬁL(t)Gout,L(r) (43)

for 0=r=ry, and

Phys. Plasmas 17, 052502 (2010)

lvllout,R(r, t) = 'r//R(t)GOUt,R(r) (44)

for rr=r=1. They are different from the expressions for the
eigenvalue problems (16) and (19) so that the amplitude co-
efficients ¢4 and ¢y are considered to be time dependent.
This assumption may not be trivial, in general. However, if
You L (r,1) and i, r(r,7) are substituted into the linearized
MHD equations, the time-derivative terms can be neglected
in the outer region since we are focusing on slow resistive
modes. Then ¢y, 1 (r,1) and i, r(r,?) satisfy the Newcomb
equation approximately.

C. Inner region

We solve the linearized reduced MHD equations

imyy imJy imk,
0 —(ins— 'J/O)Vzl— " 0
5 r r r
Vi 0 0\le . ¢
d ) imy
S0 rofy)=) -{ine- v 0 ¥ |, (45)
r
0 0 1/\p p
impB’
B 0 0
-

as an initial-value problem in the inner region. Equilibrium
flows are assumed to be zero. The above equations are not
the so-called inner-layer equation with an expanded radial
coordinate and frequency.

In order to solve the evolution equation, we adopt the
implicit method. If ¢, ¢, p, and r at the ith time step are
denoted by ¢', i/, p', and ¢, respectively, we obtain the fol-
lowing difference equations:

(Vie)*! - At[— (ins - lm%)(Viw w1 1My !
r
imky, ., i
+—r0p1 '}=(V2L<P), (46)
wﬁ"A{‘Gm*fm%)¢“—nWin}=w,(m)
! _Atlmrﬂ e =p', (48)

where At denotes the time step size.

In the inner region, we consider an inhomogeneous so-
lution as well as Green’s functions for the initial-value prob-
lem. The Green’s functions are obtained by setting the right-
hand side be zero in Egs. (46)—(48). The boundary conditions
(20) and (22) are imposed similar to the eigenvalue problem,

and we obtain Gy, and Gy, r for a given Az. We need to be
careful since the definition of these Green’s functions is dif-
ferent from those in the eigenvalue problem.

The inhomogeneous solution is obtained by retaining the
right-hand side of Egs. (46)—(48). Let us denote
H:="(¢, ¢, p) and impose the following boundary conditions:

*k

H () =Hi ' (rg) ={ 0 . (49)

in

The asterisk again denotes that Eq. (24) is imposed for ¢ and
— denotes that no boundary condition is imposed for p.

Then, the solution in the inner region can be expressed
as

i+1

@
{ﬂ:+1 = leIGin,L(r) + ngGin,R(r) + Hizl(r) . (50)

i+1

p

Here, the amplitude coefficients WL+ !and W}{ Iare chosen to
be equal to #; (#*') and R (¢#*") in the outer regions, respec-
tively. This choice makes i continuous across the boundaries
r=ry, and rg.

In addition, we impose the continuity of di/dr across
these boundaries. Writing the ¢ components of G and H as
G and H, respectively, we obtain
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FIG. 19. Time evolution of kinetic and magnetic energy. As a reference,
curves are plotted by using the eigenvalue obtained by the eigenvalue prob-
lem. Our numerical matching technique correctly capture the exponential
growth via the initial-value approach.
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where the prime denotes radial derivative. By solving this
equation, we obtain ¢{*' and ;.

Since this is a linear problem, we only need to solve for
G, 1, and Gy, r only once at the beginning of the simulation
if At is not changed. In addition, the matrix appearing in the
left-hand side of Egs. (46)—(48) does not change in time.
Thus, we only need to LU decompose the matrix once at the
beginning of the simulation. Then, the forward and backward
substitutions are operated on the source term to obtain H;''
at each time step.

D. Application

The numerical example shown in this subsection is for a
zero-beta equilibrium with j,=j,o(1-7r?), with j,, determined
such that g,=3.5. The m/n=2/1 rational surface appears at
r=0.5. Since the equilibrium pressure is assumed to be zero,
the pressure equation (48) decouples from the others. For the
results shown below, Ar=0.2 was used, although we also
tried different values.

Figure 19 shows the time evolution of perturbed kinetic
and magnetic energy for 7=107%. The corresponding eigen-
function was used as the initial condition. Thus, we must
observe the exponential growth with the corresponding
growth rate. In the figure, curves proportional to e>?is’ are
plotted together with the results of the time-evolution simu-
lation, where 7., denotes the eigenvalue obtained by solving
the corresponding eigenvalue problem. We observe that the
obtained time evolution of energy is exactly what we expect.

Figure 20 shows the mode structure at t=10*. As a ref-
erence, the eigenfunctions obtained by the eigenvalue prob-
lem, or the initial condition multiplied by the amplification
factor edie’ with the eigenvalue 7y, and t= 10, are plotted
together. Figures 20 shows (a) the imaginary part of ¢
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FIG. 20. (Color online) The mode structure at t=10* by the initial-value
problem is shown. (a) Imaginary part of ¢ and (b) real part of . The
eigenfunctions obtained by the eigenvalue problem, or the initial condition,
multiplied by the amplification factor e’ with the eigenvalue 7., and
t=10% are plotted together. We find good agreement between them.

and (b) the real part of . We observe good agreement be-
tween them, and they prove that the exponential growth of
the mode is calculated correctly by our numerical matching
technique.

IV. DISCUSSION

In this section, let us discuss the application of the
present numerical matching technique to the stability calcu-
lation of high-beta plasmas in a toroidal geometry, which is
one of the future issues of the extension of this study. The
important differences between the cylindrical and the toroi-
dal geometries are (i) the existence of nonresonant regular
mode and (ii) the coupling between even and odd parity
modes. As for item (i), we need to deal with the toroidal
geometry actually. As for item (ii), such coupling of the par-
ity can occur even in the cylindrical geometry if the resistiv-
ity is not so small. In the so-called inner-layer equation, there
is no term which makes coupling between even and odd
modes. This inner-layer equation is derived by taking the
limit of infinitely small resistivity or thin layer. In this limit
procedure, some terms which make coupling between even
and odd modes are dropped in the governing equation. How-
ever, when the resistivity is not small and the “inner-layer,”
if we can define properly, is not thin, we cannot take such
limit in the governing equation, and some terms remain fi-
nite, although they can be small, which can make coupling
between even and odd parity modes. Some of the examples
shown in the present paper dealt with such relatively large
resistivity, and the numerical matching succeeds to capture
the eigenmodes correctly. In addition, we have observed the
uniform convergence property for different mode numbers
for a range of resistivity, although the different mode num-
bers are decoupled in the cylindrical geometry. Therefore, we
think that the application to the full toroidal finite-beta case
is also possible.

V. CONCLUSIONS

We have developed a new numerical matching technique
for the linear stability calculation of resistive MHD modes.
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The solution to the resistive reduced MHD equations in an
inner layer with finite width is matched onto the solution to
the Newcomb equation. The boundary conditions adopted in
the matching are the continuity of the stream function of
magnetic field and its spatial derivative, and the smooth dis-
appearance of parallel electric field. The latter is imposed as
the boundary condition of the third kind for the stream func-
tion of velocity field. Since the number of independent solu-
tions in the inner region (resistive MHD) and the outer re-
gions (ideal MHD) are 4 and 2, respectively, the boundary
conditions for the Green’s functions in the inner region are
chosen so that only two out of the four Green’s functions can
be matched onto the solutions in the outer region.

We have demonstrated that our matching technique is
successfully applied to the linear stability calculations of
tearing, internal kink, and resistive interchange modes in nor-
mal magnetic shear plasmas and double tearing mode in re-
versed magnetic shear plasmas in cylindrical geometry. Al-
though we have not proved mathematically that the usage of
the boundary condition explained above always leads to suc-
cessful matching unfortunately, we showed that the boundary
condition used in our matching technique is consistent with
the conventional asymptotic matching solution in the limit of
infinitely thin inner layer. Numerical examples of both eigen-
value and initial-value problems were shown. We found that
good agreement is obtained among the results via the present
matching technique and global solutions or results without
using the matching technique. Our numerical matching tech-
nique is applicable to a wide range of resistivity, ranging
from sufficiently small resistivity where the conventional
asymptotic matching theory serves as a good approximation
to large resistivity where the assumption for the conventional
theory breaks down. For sufficiently small resistivity, we ob-
tained good agreement of resistivity dependence of growth
rates between our numerical results and the prediction by the
conventional asymptotic matching theory. Even at large re-
sistivity, our numerical matching theory is applicable, and we
observed the deviation from the resistivity dependence given
by the conventional asymptotic matching theory.

As mentioned in Sec. I, the advantages of utilizing the
inner region with finite width are emphasized again: (i) this
method can be used even if the Newcomb equation has an
irregular singular point at the mode-resonant surface, i.e.,
reversed magnetic shear plasma with its minimum safety fac-
tor being a rational number; (ii) the Newcomb equation
needs not to be integrated so close to the mode-resonant
surface, which avoids special treatment of big solution and
sensitive behavior of matching data on local MHD equilib-
rium accuracy and local grid arrangements around the mode-
resonant surface; (iii) we do not need to care about the in-
finities of the stretched radial coordinate appearing in the
conventional inner-layer equation and about the divergence
of the norm of the solution; and (iv) this method can be
easily applied to an initial-value problem. This feature can
lead to study nonexponential behavior. We also expect that
our method can provide a basis for an extension to study
nonlinear phenomena. Application of more detailed inner-
region equation may also be possible in the framework of the
present numerical matching technique.
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FIG. 21. The real part of the Ej is plotted for several values of 7. The
amplitude is normalized by each maximum value. The relative magnitude
increases at r<<r, as 7 is increased, which seems to be the reason why the
matching does not give a good accuracy.
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APPENDIX A: BOUNDARY CONDITION FOR p

When we include a heat diffusivity term XVip on the
right-hand side of the pressure equation, we need a boundary
condition for p. This is obtained by the pressure equation and
its radial derivative, as we did for the Ohm’s law. The result-
ant boundary condition of the third kind is obtained as

n !
ap_ T
dr B
’ 2_ "
R
- + 5 - p.
no, ( n ) noo Y
srm /s srm /A srm A

(A1)

When B=0, the pressure equation decouples from the other
two equations. Therefore, we do not need to use this bound-
ary condition.

APPENDIX B: m/n=1/1 INTERNAL KINK MODES
WITH LARGE RESISTIVITY

As mentioned above, the numerical matching for large
rg, say r,=0.5, with r; #0 does not give good accuracy es-
pecially when the resistivity is not sufficiently small. Figure
21 shows the parallel electric field E, as a function of r,
obtained by solving the linearized reduced MHD in the
whole domain 0=r=1. The amplitude of E; is normalized
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such that the maximum absolute value becomes unity. The
actual peak values of Ej are —1.33 X 1074, =3.03 X 10~>, and
-5.15X 107 for =107, 1077, and 1078, respectively. We
see that E; at smaller r region has a relatively large value
compared to that in the inner layer at r=r,=0.5, especially
when 7 is large. Since E; does not disappear smoothly as
going away from the mode-resonant surface, the numerical
matching does not give a good accuracy in capturing this
eigenmode. As 7 is decreased, we observe that the current
sheet becomes sharper. We also understand that the conven-
tional asymptotic matching method fails since there is no
inner layer with infinitely thin width assumed in the theory.
We may need to develop another boundary condition for this
special case to obtain good accuracy.
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